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Abstract In this paper, we have applied an accurate and efficient wavelet scheme (due
to Legendre polynomial) to find the numerical solutions for a set of coupled reaction–
diffusion equations. This technique provides the solutions in rapid convergence series
with computable terms for the problems with high degree of non linear terms appear-
ing in the governing differential equations. The highest derivative in the differential
equation is expanded into wavelet series, this approximation is then integrated while
the boundary conditions are applied by using integration constants. With the help of
operational matrices, the nonlinear reaction–diffusion equations are converted into
a system of algebraic equations. Finally, some numerical examples to demonstrate
the validity and applicability of the method have been furnished. The use of Legendre
wavelets is found to be accurate, efficient, simple, and computationally attractive. This
wavelet method can be used for obtaining quick solution in many chemical Engineer-
ing problems.
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1 Introduction

In recent years, nonlinear reaction–diffusion equations (NLRDEs) have been widely
studied and applied in science and engineering. This study concerns the numeri-
cal solutions of nonlinear reaction–diffusion modelling the dynamics of diffusion
and nonlinear reproduction for a population. The associated NLRDEs was initi-
ated by Fisher [1] to describe the propagation behaviour of a virile mutant. Kol-
mogoroff et al. [2] introduced the problem admits a wave solution with minimum
speed. The NLRDEs describe a population of diploid individuals. These equations
have wide application in the fields of logistic population growth, flame propaga-
tion, euro physiology, autocatalytic chemical reactions, branching Brownian motion
processes, and nuclear reactor theory. But these non linear PDEs are difficult to get
their exact solutions. So the approximation and numerical methods must be used.
The numerical solutions of the NLRDEs have received considerable attention in
the literature and fall into two groups: The analytical methods and the numerical
ones. Analytical methods enable researchers to study the effect of different vari-
ables or parameters on the function under study easily. Recently, there are many
new algoritms for NLRDEs have been proposed, for example, the adomian decom-
position method (ADM) [3], the variational iteration method [4], differential trans-
form method, Reduced differential transform method [5], the Homotopy perturbation
method [6], the homotopy analysis method (HAM) [7] and other methods. Wang
[8] applied the tanh method for Fisher’s equation, which represents shock waves
structures. Mansour [9] showed that traveling wave solutions of a nonlinear reaction–
diffusion-chemotaxis model for bacterial pattern formation. Daniel Olmos and Bernie
Shizgal [10] established the Pseudo-spectral method of solution of Fisher’s equa-
tion. Wazwaz [11] introduced the analytical study on Burgers, Fisher, and Huxley
equations and combined forms of these equations. Recently, Alam Khan et al. [12]
introduced the approximate analytical solutions of fractional reaction–diffusion equa-
tions.

Rajendran and Senthamarai [13] solved the nonlinear coupled reaction–diffusion
equation by the He’s variational iteration method. Baronas et al. [14] had developed
the mathematical modeling of flow injection analysis and they solved the model
equations by the finite difference method. In recent years, non linear reaction dif-
fusion equations (NLRDE) have been used as a basis for a wide variety of mod-
els, for the special spread of gene in population and for chemical wave propagation.
Mavoungou and Cherault [15] showed ADM for solving Fishers equations. Wazwaz
and Gorguis [16] applied the ADM for solving Fisher type equation. Malfliet [17]
introduced the travelling wave solutions of complicated nonlinear PDEs. In recent
years, there have been huge activities in developing the approximation and analyt-
ical methods for Fisher’s equations. Explicit solutions of the Fisher’s equation for
a special wave speed obtained by Ablowitz and Zeppetella [18]. Puri et al. [19]
applied the singular peturbation Method for Fisher’s equation. Carey and Shen [20]
implemented the least square Finite element method for Fisher’s reaction diffusion
equation. Al-Khaled [21] introduced the sinc-collocation method by the Pseudo-
spectral method for the numerical solution of Fisher’s equation. Recently, Mittal
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and Jiwari [22] have presented the differential quadrature method for Fisher’s equa-
tions.

Wavelets theory is a relatively new and as emerging area in applied mathemat-
ical research. It has been applied many different field of science and Engineering.
Moreover wavelet transform establishes a connection with efficient and fast numeri-
cal algorithms.

In recent years, wavelet transforms have found their way into many different fields in
science, engineering and medicine. Wavelet analysis or wavelet theory, as a relatively
new and an emerging area in applied mathematical research, has received considerable
attention in dealing with NLRDEs. It possesses many useful properties, such as Com-
pact support, orthogonality, dyadic, and orthonormality and multi-resolution analysis
(MRA). Recently, Haar wavelets have been applied extensively for signal processing
in communications and physics research, and have proved to be a wonderful mathe-
matical tool. After discretizing the differential equations in a conventional way like the
finite difference approximation, wavelets can be used for algebraic manipulations in
the system of equations obtained which lead to better condition number of the resulting
system.

In the numerical analysis, wavelet based methods and hybrid methods become
important tools because of the properties of localization. In wavelet based meth-
ods, there are two important ways of improving the approximation of the solu-
tions: Increasing the order of the wavelet family and the increasing the resolution
level of the wavelet. There is a growing interest in using various wavelets [23]
to study problems, of greater computational complexity. Among the wavelet trans-
form families the Haar and Legendre wavelets deserve much attention. The basic
idea of Legendre wavelet method is to convert the Partial differential equations to
a system of algebraic equations by the operational matrices of integral or deriva-
tive [24]. The main goal is to show how wavelets and MRA can be applied for
improving the method in terms of easy implementability and achieving the rapid-
ity of its convergence. Recently, Hesameddini and Shekarpaz [25] used the Legendre
wavelet method for solving Klein–Gordon equations. Razzaghi and Yousefi [26] intro-
duced the Legendre wavelet method for solving variational problems and constrained
optimal control problems. Hariharan et al. [27] had introduced the diffusion equa-
tion, convection-diffusion equation, Reaction–diffusion equation, nonlinear parabolic
equations, fractional Klein–Gordon equations, Sine–Gordon equations and Fisher’s
equation by the Haar wavelet method. Liu and Lin En-bing [28] applied the Legen-
dre wavelet method for solving partial differential equations. Mohammadi and Hos-
seini [29] had showed a new Legendre wavelet operational matrix of derivative in
solving singular ordinary differential equations. Parsian [30] introduced two dimen-
sional Legendre wavelets and operational matrices of integration. Ben-yu et al. [31]
implemented a Legendre spectral method for solving non-linear Klien–Gordon equa-
tion. Mohamadi et al. [32] used the Legendre wavelets for fractional order boundary
value problems. For complete sake of Legendre wavelet is presented in the literature
[23].

Razzaghi and Yousefi [33] introduced the Legendre wavelets operational matrix
of integration. Yousefi [34] applied the Legendre wavelets for solving differential
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equations of Lane-Emden type. Maleknejad and Sohrabi [35] had showed the numer-
ical solutions of Fredholm integral equations of first kind by the Legendre wavelets
method. Hariharan et al. [36] had used the Haar wavelet method for estimating the depth
profile of soil temperature. Hariharan and Kannan [1] established the Haar wavelet
method for solving Cahn-Allen equation. Jafari et al. [37] used the Legendre wavelets
method for solving fractional differential equations. Yin Yang [38] applied the Legen-
dre pseudo spectral method for solving multi-order fractional differential equations.
In the numerical analysis, wavelet based methods and hybrid methods become impor-
tant tools because of the properties of localization. In wavelet based methods, there
are two important ways of improving the approximation of the solutions: Increasing
the order of the wavelet family and the increasing the resolution level of the wavelet.
There is a growing interest in using wavelets [39–44] to study problems, of greater
computational complexity. Among the wavelet transform families the Haar and Legen-
dre wavelets deserve much attention. Lepik [39] applied the Hare wavelet method for
evolution equations. In recent years, several analytical/approximation methods are
implemented for solving Fisher-type PDEs (see Ref. [45–47]).

In this paper we have applied the wavelet methods for solving a fisher type model
equations arising in mathematical chemistry.

This paper is organized as follows: In Sect. 2, the mathematical formulation of the
problem is presented. The Haar and Legendre wavelets are demonstrated in Sect. 3.
Then, the methods of solution for NLRDEs are implemented in Sect. 4. In Sect. 5,
the convergence analysis is described. Several numerical examples to demonstrate the
effectiveness of the proposed method are given in Sect. 6. Concluding remarks are
given in Sect. 7.

2 Mathematical formulation of the problem

Consider the following the enzyme-catalyzed reaction S
E−→ P characterized by the

substrate (S) binding to the enzyme (E) causes for the product (P) while the rate of
product appearance depends on concentration substrate, under the following assump-
tions.

(i) Diffusion of substrate molecules is neglected
(ii) Enzyme reaction is at steady state, the mathematical model for enzyme kinetics

is given by Michaelis–Menten equation

ν = d P

dt
= −d S

dt
= VmaxS

KM + S
(2.1)

where ν is the rate of the enzymatic reaction,Vmax is the maximal enzymatic rate
attainable with that amount of enzyme, when the enzyme is fully saturated with
substrate, KM is the Michaelis constant, S is the substrate concentration, P is
concentration of the reaction product, and t is time. Vmax corresponds to relative
activity of substrate.

(iii) Symmetrical geometry of the electrode.
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(iv) Homogeneous distribution of immobilized enzyme in the enzyme membrane.
Using Fick’s law, the non-linear reaction–diffusion equation with diffusion
described by the following equations [13]

∂S

∂T
= DS

∂2S

∂X2 − VmaxS

KM + S
, 0 < X < 1, 0 < T ≤ τ (2.2)

∂P

∂T
= DP

∂2 P

∂X2 + VmaxS

KM + S
, 0 < X < 1, 0 < T ≤ τ, (2.3)

where τ is full time of biosensor operation to be analyzed, DS and DP are diffusion
coefficients of the substrate and product respectively.

The operation of biosensor starts when some substrate appears over the surface of the
enzyme layer. Thus initial conditions take the form

S(x, 0) = 0, 0 ≤ x < 1

P(x, 0) = 0, 0 ≤ x ≤ 1

S(d, 0) = S0, where S0 is the concentration of substrate (bulk) over the biosensor and
d is thickness of enzyme layer. If the substrate is well stirred and in powerful motion,
then the diffusion layer (0 < X < d) will remain at a constant thickness. When the
substrate (analyte) disappears, a buffer solution swills the enzyme surface, reducing
the substrate concentration at this surface to zero. The substrate (analyte) remaining in
the enzyme membrane, the mass diffusion as well as the reaction still continues some
time even after the disconnect of the biosensor and substrate. Therefore, we have used
the boundary conditions in the interval 0 < T ≤ τ given by

(
∂S

∂x

)
x=0

= 0

S(d, T ) =
{

S0, T ≤ τF

0, T > τF

P(0, T ) = P(d, T ) = 0

where τF is the time of flow injection, i.e., the time when analyte disappears from the
bulk solution/membrane interface.

By applying the following parameters,

s = S

kS∞ , p = P

kS∞ , x = X

L
,

t = Ds T

L2 , α = kS∞

KM
, K = Vmax L2

KM Ds

We obtained the following dimensionless NLRDEs,

∂s

∂t
= ∂2s

∂x2 − K s

1 + αs
, 0 < t < 1, 0 < t ≤ τ (2.4)
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∂p

∂t
= ∂2 p

∂x2 + K s

1 + αs
, 0 < t < 1, 0 < t ≤ τ, (2.5)

where s and p represents the dimensionless concentration of substrate and product
while x and t represents dimensionless distance and time parameter, respectively. The
parameter α denotes the saturation of the enzyme and K denotes reaction–diffusion
parameter. When αs � 1, Eqs. (4) and (5) are in the from [See Ref. [13])

∂s

∂t
= ∂2s

∂x2 − K s(1 − αs) (2.6)

∂p

∂t
= ∂2 p

∂x2 + K s(1 − αs) (2.7)

since s = 1 − p, it is enough to solve Eq. (2.6) only. This type of NLRDE
comes across in chemical kinetics, population dynamics and non-linear waves. Such
non-linear equations also occur often in the description of chemical and biological
phenomena.

3 Haar and Legendre wavelets and properties

3.1 Wavelets

Wavelets are the family of functions which are derived from the family of scaling
function {∅ j,k: k ∈ Z} where

∅(x) =
∑

k

ak ∅(2x − k) (3.1)

For the continuous wavelets, the following equation can be represented:

Ψa,b(x) = |a| −1
2 Ψ

(
x − b

a

)
a, b ∈ R, a �= 0. (3.2)

where a and b are dilation and translation parameters, respectively, such that Ψ (x) is
a single wavelet function.

The discrete values are put for a and b in the initial form of the continuous wavelets,
i.e.:

a = a−j
0 , a0 > 1, b0 > 1, (3.3)

b = kb0a− j
0 , j, k ∈ Z . (3.4)

Then, a family of discrete wavelets can be constructed as follows:

Ψ j,k = |a0| 1
2 Ψ (2 j x − k), (3.5)

So,Ψ j,k(x) constitutes an orthonormal basis in L2 (R), whereΨ (x) is a single function.

123



J Math Chem (2013) 51:2361–2385 2367

3.2 Haar wavelets preliminaries

Haar wavelet was a system of square wave; the first curve was marked up as h0(t),
the second curve marked up as h1(t) that is

h0(x) =
{

1, 0 ≤ x < 1
0, otherwise

h1(x) =
⎧⎨
⎩

1, 0 ≤ x < 1/2,
−1, 1/2 ≤ x < 1,
0, otherwise,

where h0(x) is scaling function, h1(x) is mother wavelet. In order to perform wavelet
transform, Haar wavelet uses dilations and translations of function, i.e. the transform
make the following function.

hn(x) = h1(2
j x − k), n = 2 j + k, j ≥ 0, 0 ≤ k < 2 j . (3.6)

The first eight Haar function and their integrals are presented in Ref. [23]

3.3 Function approximation

Any square integrable function y(x) ∈ L2[0, 1) can be expanded by a Haar series of
infinite terms

y(x) =
∞∑

i=0

ci hi (x), i ∈ {0} ∪ N , (3.7)

where the Haar coefficients ci are determined as,

c0 =
1∫

0

y(x)h0(x)dx, cn = 2 j

1∫
0

y(x)hi (x)dx, i = 2 j

+k, j ≥ 0, 0 ≤ k < 2 j , x ∈ [0, 1)

such that the following integral square error ε is minimized:

ε =
1∫

0

[
y(x)−

m−1∑
i=0

ci hi (x)

]2

dx, m = 2 j , j ∈ {0} ∪ N . (3.8)

Usually, the series expansion contains infinite terms for smooth y(x). If y(x) is piece-
wise constant by itself, or may be approximated as piecewise constant during each
subinterval, then y(x) will be terminated at finite m terms, that is
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y(x) =
m−1∑
i=0

ci hi (x) = cT
(m)h(m)(x) (3.9)

where the coefficients cT
(m) and the Haar function vector h(m)(x) are defined as

cT
(m) = [c0, c1, . . . , cm−1] (3.10)

and h(m)(x) = [h0(x), h1(x), . . . , hm−1(x)]T where ‘T’ means transpose and m = 2 j .
The first four Haar function vectors, which x = n/8, n = 1, 3, 5, 7 can be expressed

as follows

h4(1/8) = [1, 1, 1, 0]T , h4(3/8) = [1, 1,−1, 0]T ,

h4(5/8) = [1,−1, 0, 1]T , h4(7/8) = [1,−1, 0,−1]T ,

which can be written in matrix form as

H4 = [h4(1/8), h4(3/8), h4(5/8), h4(7/8)]

H4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦
,

In general, we have

Hm = [hm(1/2m), hm(3/2m), . . . , hm(2m − 1)/2m],

where H1 = [1], H2 =
(

1 1
1 −1

)
. The collocation points are identified as xl =

(2l − 1)/2m, l = 1, 2, . . . ,m. In application, in order to avoid dealing with impulse
function, integration of the vector hm(x) given by

x∫
0

hm(t)dt ≈ Pmhm(x), x ∈ [0, 1], (3.11)

where Pm is the m × m operational matrix and is given by

P(m) = 1

2m

(
2m P(m/2) −H(m/2)

H−1
(m/2) O

)
(3.12)

where O is a null matrix of order m
2 × m

2 .
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(The proof can be found in [41]) where P1 = [1/2], so

P2 = 1

4

(
2 −1
1 0

)
, P4 = 1

16

⎡
⎢⎢⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤
⎥⎥⎦ ,

P8 = 1

64

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 1 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 −1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chen and Hsiao [41] introduced that the following matrix equation for calculating
the matrix P of order m holds

P(m) = 1

2m

(
2m P(m/2) −H(m/2)

H−1
(m/2) O

)

where O is a null matrix of order m
2 × m

2 ,

Hm×m �=[hm(t0) hm(t1)− − − − − −hm(tm−1)] (3.13)

Here i
m ≤ t < i + 1

m and

H−1
mxm = 1

m
H T

mxm diag(r) (3.14)

3.4 Legendre wavelets and its properties

The Legendre wavelets are defined by

Ψnm(t) =
{√

m + 1
2 2

k
2 Lm

(
2k t − nh̄), for nn−1

2k ≤ t ≤ nn+1
2k

0, otherwise
, (3.15)

where m = 0, 1, 2, . . .,M − 1 and k = 1, 2, . . ., 2j−1. The coefficient
√

m + 1
2 is

for orthonormality, then, the wavelets Ψk,m(x) form an orthonormal basis for L2[0,1]
[26]. In the above formulation of Legendre wavelets, the Legendre polynomials are in
the following way:
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p0 = 1,

p1 = x,

pm+1(x) = 2m + 1

m + 1
x pm(x)− m

m + 1
pm−1(x). (3.16)

and {pm+1(x)} are the orthogonal functions of order m, which is named the well-known
shifted Legendre polynomials on the interval [0,1]. Note that, in the general form of
Legendre wavelets, the dilation parameter is a = 2−j and the translation parameter is
b = n 2j.

3.5 Two-dimensional Legendre wavelets

Two-dimensional Legendre wavelets in L2(R) over the interval [0,1] × [0,1] as the
form [26]:

Ψn,m,n′,m′(x, y) =

⎧⎪⎨
⎪⎩

√(
m + 1

2

) (
m′ + 1

2

)
2

k+k′
2 pm(x)pm′(y),

n−1
2k−1 ≤ x ≤ n

2k−1 ,
n′−1
2k−1 ≤ y ≤ n′

2k′−1 ;
0, otherwise.

(3.17)

and m = 0, 1, 2, . . .,M − 1,m′ = 0, 1, 2, 3, . . .M′ − 1, n = 1, 2, . . ., 2k−1, n′ =
1, 2, . . .2k′−1 where

Pm(x) = Pm′(2k x − 2n + 1), Pm′(y) = Pm′(2k′
y − 2n′ + 1), (3.18)

Pm are Legendre functions of order m defined over the interval [−1,1].

By using two-dimensional shifted Legendre polynomials into x ∈
[

n−1
2k−1 ,

n
2k−1

]
and

y ∈
[

n′−1
2k′−1 ,

n′
2k′−1

]
, the ∫1

0 Ψn,m,n′,m′(x, y) can be written as

1∫
0

Ψn,m,n′,m′ (x, y) = Am,m′ .Pm′ (x)Pm′ (y)χ⎡
⎣

n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y), (3.19)

In which Am,m′ =
√(

m + 1
2

) (
m′ + 1

2

)
2

k+k′
2 and χ⎡

⎣
n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y) is a char-

acteristic function defined as χ⎡
⎣

n−1
2k−1 ,

n
2k−1

n′−1
2k′−1 ,

n′
2k′−1

⎤
⎦
(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈
[

n−1
2k−1 ,

n
2k−1

]
,

y ∈
[

n′−1
2k′−1 ,

n′
2k′−1

]
;

0, otherwise
Two dimension Legendre Wavelets are an orthonormal set over [0,1] × [0,1].

1∫
0

1∫
0
Ψn,m,n′,m′(x, y)Ψn1,m1,n′

1,m
′
1
(x, y)dxdy = δn,n1δn′,n′

1
δm′,m′

1
(3.20)
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The function u(x,y) ∈ L2(R) defined over [0,1] × [0,1] may be expanded as

u(x,y) = X(x)Y(y) ∼=
∞∑

n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

cn,m,n′,m′ Ψn,m,n′,m′(x, y) (3.21)

If the infinite series in Eq. (3.21) is truncated, then Eq. (3.21) can be written as

u(x,y) = X(x)Y(y) ∼=
2k−1∑
n=1

M−1∑
m=0

2k′−1∑
n′=1

M ′−1∑
m′=0

cn,m,n′,m′ Ψn,m,n′,m′(x, y) (3.22)

where cn,m,n′,m′ = ∫1
0 ∫1

0 X (x)Y (y)Ψn,m,n′,m′ (x, y)dxdy. The Eq. (3.22) can be
expressed as the form

u(x, y) = cT .Ψ (x, y) (3.23)

where C and �(x,y) are coefficients matrix and wavelets vector matrix respectively.
The number of dimensions of C and �(x,y) are 2k−12k′−1MM’x1, and given by

C = [c1,0,1,0, . . . c1,0,1,M ′−1, c1,0,2,0, . . . , c1,0,2,M ′−1, . . . , c1,0,2k′−1,0, . . . ,

c1,0,2k′−1,M ′−1, . . . c1,M−1,1,0, . . . c1,M−1,1,M ′−1,c1,M−1,2,0, . . . , c1,M−1,2,M ′−1,

. . . , c1,M−1,2K−1,0, . . . c1,M−1,2K−1,M ′−1, . . . c2,0,1,0, . . . c2,0,1,M ′−1, c2,0,2,0,

. . . , c2,0,2,M ′−1, . . . c2,0,2K−1,0, . . . c2,0,2k−1,M ′−1, . . . c2,M−1,1,0 . . . c2,M−1,1,M ′−1,

c2,M−1,2,0, . . . , c2,M−1,2,M ′−1, . . . , c2,M−1,2k−1,0,

. . . , c2,M−1,2k−1,M ′−1, . . . , c2k−1,0,1,0,

. . . c2k−1,0,1M ′−1, c2k−1,0,2,0, . . . , c2k−1,0,,M ′−1, . . . c2k−1,0,2k−1,0,

. . . c2k−1,M−1,2k′−1,M ′−1]T (3.24)

� = [�1,0,1,0, . . . , �1,0,1,M′−1, �1,0,2,0, . . . �1,0,2k−1,0
, . . . �1,0,2k′−1,M′−1,

. . . , �1,M−1,1,0, . . . �1,M−1,1,M′−1, �1,M−1,2,0, . . . , �1,M−1,2,M′−1,

. . . �1,M−1,2k−1,0, . . . , �1,M−1,2k−1,M′−1, . . . , �2,0,1,0, . . . ,

�2,0,1,M′−1, �2,0,2,0, . . . �2,0,2,M′−1, . . . , �2,0,2k′−1,0, . . . , �2,0,2k−1,M′−1, . . . ,

�2,M−1,1,0, . . . , �2,M−1,1,M′−1, �2,M−1,2,0, . . . , �2,M−1,2,M′−1,

. . . , �2,M−1,2k′−1,0, . . . ,

�2,M−1,2k′−1,M′−1, �2k−1,0,1,0, . . . , �2k−1,0,1,M′−1, �2k−1,0,2,0,

. . . , �2k−1,0,2,M′−1, . . . ,

�2k−1,0,2k−1,0, . . . �2k−1,M−1,2k−1,M′−1]T (3.25)

The integration of the product of two Legendre wavelet function vectors is obtained
as

1∫
0

1∫
0
Ψ (x, y)Ψ T (x, y)dxdy = I (3.26)
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where I is the identity matrix.
A two-dimensional function f(x,y) defined [0,1) × [0,1) may be expanded by Legendre
wavelet series as

f (x, y) =
2k M∑
i=1

2k M∑
j=1

Ci j �i(x)�j(y) = �T(x)C�(y) (3.27)

where

Ci j = 1∫
0

f (x, y)�i(x)dx
1∫
0

f(x,y)�j(y)dt (3.28)

Equation (3.27) can be written into the discrete form (in matrix form) by

f (x, y) = �T(x)C�(y) (3.29)

where C and �(t) are 2k−1 M × 1 matrices given by

C =

⎡
⎢⎢⎢⎣

c0,0 c0,1 . . . c0,2k−1 M
c1,0 c1,1 . . . c1,2k−1 M
...

...
. . .

...

c2k−1 M,0 c2k−1M,1 . . . c2k−1 M2k−1 M

⎤
⎥⎥⎥⎦

In the following section, we will give the operational matrix of derivative for two-
dimensional Legendre wavelets and give the proof in appendix A.

Theorem 1 Let �(x,y) be the two-dimensional Legendre wavelets vector defined in
Eq. (3.29), we have

∂Ψ (x, y)

∂x
= Dx�(x,y) (3.30)

where Dx is 2k−1,2k′−1MM� × 2k−12k′−1MM� and has the form as follows:

Dx =

⎡
⎢⎢⎢⎣

D O ′ . . . 0′
0′ D . . . 0′
...

...
. . .

...

O ′ O ′ . . . D

⎤
⎥⎥⎥⎦

In which 0′ and D is 2k−12k′−1MM� × 2k−12k′−1MM� matrix and the element of
D is defined as follows:

Dr,s =
{

2k√(2r − 1) (2s − 1) I, r = 2, 3, . . .M; s = 1, . . . r − 1; r + s is odd
0 otherwise

(3.31)

123



J Math Chem (2013) 51:2361–2385 2373

and I, O are 2k′−1M′ × 2k′−1M′ identity matrix.

Theorem 2 Let Ψ (x, y) be the two-dimensional Legendre wavelets vector defined in
Eq. (3.17), we have

∂Ψ (x, y)

∂x
= Dy �(x,y), (3.32)

Dy =

⎡
⎢⎢⎢⎣

D O ′ . . . 0′
0′ D . . . 0′
...

...
. . .

...

O ′ O ′ . . . D

⎤
⎥⎥⎥⎦ ,

where Dy is 2k−1,2k′−1MM� × 2k−12k′−1MM� and O′, D is M M ′ × M M ′ matrix is
given as

D =

⎡
⎢⎢⎢⎣

F O . . . 0
0 F . . . 0
...
...
. . .

...

O O . . . F

⎤
⎥⎥⎥⎦ ,

in which O and F is M ′ × M ′ matrix, and F is defined as follows:

Fr,s =
{

2k′√
(2r −1) (2s−1), r =2, . . . ,M ′; S = 1, . . . , r −1; and r +s is odd

0, otherwise

(3.33)

By using Eqs. (3.30) and (3.31), the operational matrices for nth derivative can be
derived as

∂nΨ (x, y)

∂xn
= Dn

xΨ (x, y),
∂mΨ (x, y)

∂ym
= Dm

y Ψ (x, y)

∂n+mΨ (x, y)

∂xn∂ym
= Dn

x Dm
y Ψ (x, y)

where Dn is the nth power of matrix D.

3.6 Block pulse functions (BPFs)

The block pulse functions form a complete set of orthogonal functions which defined
on the interval [0, b) by

bi (t) =
{

1, i−1
m b ≤ t < i

m b,
0, elsewhere

(3.34)
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for i = 1,2,…,m. It is also known that for any absolutely integrable function f(t) on
[0,b) can be expanded in block pulse functions:

f (t) ∼= ξ T Bm(t) (3.35)

ξ T = [ f1, f2, . . . , fm], Bm(t) = [b1(t), b2(t), . . . , bm(t)] (3.36)

where fi are the coefficients of the block-pulse function, given by

fi = m

b

b∫
0

f (t)bi (t)dt (3.37)

Remark 1 Let A and B are two matrices of m × m, then A ⊗ B = (ai j × bi j )mm .

Lemma 1 Assuming f(t) and g(t) are two absolutely integrable functions, which can
be expanded in block pulse function as f(t) = FB(t) and g(t) = GB(t) respectively, then
we have

f (t)g(t) = F B(t)BT (t)GT = H B(t) (3.38)

where H = F ⊗ G.

3.7 Approximating the nonlinear term

The Legendre wavelets can be expanded into m-set of block-pulse Functions as

Ψ (t) = ∅m×m Bm(t) (3.39)

Taking the collocation points as following

ti = i − 1/2

2k−1 M
, i = 1, 2, . . . , 2k−1 M (3.40)

The m-square Legendre matrix ∅m×m is defined as

∅m×m ∼= [Ψ (t1) Ψ (t2) . . . Ψ (t2k−1 M )] (3.41)

The operational matrix of product of Legendre wavelets can be obtained by using
the properties of BPFs, let f (x, t) and g(x, t) are two absolutely integrable func-
tions, which can be expanded by Legendre wavelets as f (x, t) = Ψ T (x)FΨ (t) and
g(x, t) = Ψ T (x)GΨ (t) respectively.
From Eq. (3.39), we have

f (x, t) = Ψ T (x)FΨ (t) = BT (x)∅T
mm F∅mm B(t), (3.42)

g(x, t) = Ψ T (x)GΨ (t) = BT (x)∅T
mm G∅mm B(t), (3.43)
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and Fb = ∅T
mm F∅mm,Gb = ∅T

mm G∅mm, Hb = Fb ⊗ Gb.
Then,

f (x, t)g(x, t) = BT Hb B(t),

= BT (x)∅T
mminv(∅T

mm)Hbinv(inv(∅T
mm)Hbinv(∅mm))∅mm B(t)

= Ψ T (x)HΨ (t) (3.44)

where H = inv(∅T
mm)Hbinv((∅mm))

3.8 Function approximation

A given function f(x) with the domain [0,1] can be approximated by:

f(x) =
∞∑

k=1

∞∑
m=0

ck,mΨk,m(x) = CT .Ψ (x). (3.45)

If the infinite series in Eq. (3.45) is truncated, then this equation can be written as:

f(x) �
∞∑

k=1

∞∑
m=0

ck,mΨk,m(x) = CT .Ψ (x). (3.46)

where C and Ψ are the matrices of size (2j−1M × 1).

C =
[
c1,0, c1,1, . . .c1,M−1, c2,0, c2,1, . . .c2,M−1, . . .c

j−1
2,1 , . . .c

j−1
2,M−1

]T
(3.47)

Ψ (x) = [Ψ1,0, Ψ1,1, Ψ2,0, Ψ2,1, . . . Ψ2,M−1, . . . Ψ2 j−1,M−1]T . (3.48)

4 Methods of solution

4.1 Solving the NLRDEs by the Haar wavelet method (HWM)

We consider Eq. (2.6)

∂s

∂t
= ∂2s

∂x2 − K s(1 − αs) (4.1)

with the initial condition

s(x, 0) = f (x), 0 ≤ x ≤ 1 (4.2)

and the boundary conditions

s(0, t) = g0(t), s(1, t) = g1(t), 0 < t ≤ T . (4.3)
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Let us divide the interval (0,1] into N equal parts of length�t = (0, 1]/N and denote
ts = (s − 1)�t, s = 1, 2, . . . N . We assume that ṡ′′(x, t)can be expanded in terms of
Haar wavelets as formula

ṡ′′(x, t) =
m−1∑
n=0

cs(n)hn(x) = cT
(m)h(m)(x) (4.4)

where . and ′ means differentiation with respect to t and x respectively, the row vector
cT
(m) is constant in the subinterval t ∈ (ts, ts+1]

Integrating formula Eq. (4.4) with respect to t from ts to t and twice with respect
to x from 0 to x , we obtain

s′′(x, t) = (t − ts)c
T
(m)h(m)(x)+ s′′(x, ts) (4.5)

s(x, t) = (t − ts)c
T
(m)Q(m)h(m)(x)

+s(x, ts)− s(0, ts)+ x[s′(0, t)− s′(0, ts)] + s(0, t) (4.6)

ṡ(x, t) = cT
(m)Q(m)h(m)(x)+ xṡ′(0, t)+ ṡ(0, t) (4.7)

By the boundary conditions, we obtain

s(0, ts) = g0(ts), s(1, ts) = g1(ts)

ṡ(0, t) = g′
0(t), ṡ(1, t) = g′

1(t)

Putting x = 1 in formulae Eqs. (4.6) and (4.7), we have

s′(0, t)− s′(0, ts) = −(t − ts)c
T
(m)Q(m)h(m)(x)

+g1(t)− g0(t)− g1(ts)+ g0(ts) (4.8)

ṡ′(0, t) = g′
1(t)− cT

(m)Q(m)h(m)(x)− g′
0(t) (4.9)

Substituting formulae Eqs. (4.8) and (4.9) into formulae Eqs. (4.4)–(4.6), and dis-
cretizising the results by assuming x → xl , t → ts+1 we obtain

s′′(xl , ts+1) = (ts+1 − ts)c
T
(m)h(m)(xl)+ s′′(xl , ts) (4.10)
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s(xl , ts+1) = (ts+1 − ts)c
T
(m)Q(m)h(m)(xl)+ s(xl , ts)− g0(ts)+ g0(ts+1)

+xl [−(ts+1 − ts)c
T
(m)P(m) f + gl(ts+1)

−g0(ts+1)− g1(ts)+ g0(ts)] (4.11)

ṡ(xl , ts+1) = cT
(m)Q(m)h(m)(x)+g′

0(ts+1)+xl [−cT
(m)P(m) f +g′

1(ts+1)− g′
0(ts+1)]

(4.12)

where the vector f is defined as

f = [1, 0, . . . , 0︸ ︷︷ ︸
(m−1)elements

]T

In the following the scheme

ṡ(xl , ts+1) = s′′(xl , ts+1)− K s(xl , ts+1)
[
1 − αs(xl , ts+1)

]
(4.13)

which leads us from the time layer ts to ts+1 is used.
Substituting Eqs. (4.10)–(4.12) into the Eq. (4.13), we obtain

cT
(m)Q(m)h(m)(xl)+ xl [−cT

(m)P(m) f + g′
1(ts+1)− g′

0(ts+1)] + g′
0(ts+1)

= s′′(xl , ts+1)− K s(xl , ts+1)[1 − αs(xl , ts+1)] (4.14)

From formula Eq. (4.14) the wavelet coefficients cT
(m) can be successively calculated.

Using the relation s = 1 − p, we can also obtain the solution of Eq. (2.7).
The exact solution of Eqs. (4.1)–(4.3) by tanh method is given by

s(x, t) = 1

α
− 1

4α

{
1 − tanh

[√
K/6

2
(x − 5

√
K/6t)

]}2

(4.15)

It is more convenient to recast the Eq. (4.15) using the relation 1−tanh y = 2/[1 + e2y]
into the following format

s(z) = 1

α

{
1 − [1/[1 + exp(z

√
K/6)]2]

}
(4.16)

where

z = x − 5
√

K/6t (4.17)

Our proposed method (LLWM) can be compared with Rajendran and Senthamarai
results (See Ref. [13]).
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4.2 Method of solution by the LLWM

We consider the Eq. (4.1)

∂s

∂t
= ∂2s

∂x2 − K s(1 − αs) (4.18)

Taking Laplace transform on both sides of Eq. (4.18), we get

sL(s)− s(x, 0) = L[sxx − ks + ks2] (4.19)

sL(s) = s(x, 0)+ L[sxx − ks + ks2] (4.20)

L(u) = s−1(s(x, 0))+ s−1(L[uxx − ku + ku2]) (4.21)

s = s(x, 0)+ L−1(s−1L[sxx − ks + ks2]) (4.22)

Because

L−1[s−1(tn)] = L−1(n!s−(n+2))

= 1

n + 1
tn+1; (n = 0, 1, 2, . . .) (4.23)

We have

L−1[s−1L()] =
t∫

0

(.)dt (4.24)

By using the Legendre wavelets method,

s = CTψ(x, t) (4.25)

s(x, 0) = STψ(x, t)
g(s) = GTψ(x, t)

}
(4.26)

CTψ(x, t) = STψ(x, t)+ CT Dx2 − GT (4.27)

CT = ST + (CT Dx2 − GT )P2
t (4.28)

Iterative formula is given by

sn+1 = s(x, 0)+
∏

(sxx + g(sx )) where g(s) = ks2 − ks (4.29)

Expanding s(x,t) by Legendre wavelets using the following relation

CT
n+1 = CT

0 +
[
CT

n D2
x − GT

n

]
P2

t (4.30)
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5 Convergence analysis and error estimation

s∗ = s0 +
∏

[s∗
xx − g(s∗)] (5.1)

and

sn+1 = s0 +
∏

((sn)xx − g(sn)) (5.2)

Subtracting Eq. (5.2)–Eq. (5.1), we obtain

sn+1 − s∗ =
∏

[(sn − s∗)xx − (g(sn)− g(s∗))] (5.3)

Using Lispschitz condition,

∥∥g(sn)− g(s∗)
∥∥ ≤ γ

∥∥sn − s∗∥∥ (5.4)

We have

∥∥sn+1 − s∗∥∥ ≤
∥∥∥∏ (sn − s∗)xx

∥∥∥−
∥∥∥∏ (g(sn)− g(s∗)

∥∥∥ (5.5)

≤
∥∥∥∏ (sn − s∗)xx − γ

∥∥∥− γ
∥∥sn − s∗∥∥ (5.6)

Let

sn+1 = CT
n+1ψ(x, t) (5.7)

s∗ = CTψ(x, t) (5.8)

∈T
n+1 = CT

n+1 − CT (5.9)

Equation (5.6) gives

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥ (5.10)

By recursion, we get

∈T
n+1≤∈T

n

∥∥∥D2
x P2

t + γ P2
t

∥∥∥n ∈0 (5.11)

when

Lim
n→∞

∥∥∥D2
x P2

t + γ P2
t

∥∥∥n = 0. (5.12)
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Table 1 Comparison between
the exact and LLWM for
Example. 6.1

X t Uexact UL LW M

0.25 0.5 0.81839 0.81855

1.0 0.98292 0.98305

2.0 0.99988 0.99999

5.0 1.00000 1.00000

0.50 0.5 0.77590 0.77602

1.0 0.97815 0.97824

2.0 0.99985 0.99996

5.0 1.00000 1.0000

0.75 0.5 0.72582 0.72595

1.0 0.92207 0.92221

2.0 0.99981 0.99993

5.0 1.00000 1.00000

6 Numerical examples

Example 6.1 We consider the Fisher’s equation of the form

∂u

∂t
= ∂2u

∂x2 + K u(1 − u) (6.1)

Subject to the initial condition

u(x, 0) = 1(
1 + e

√
K
6 x
)2 (6.2)

Using HAM, the exact solution in a closed form is given by

u(x, t) = 1(
1 + e

√
K
6 x− 5

6 at
)2 (6.3)

Our proposed method (LLWM) can be compared with Rajendran and Senthamarai
results (See Ref. [13]) and Hariharan’s results (See Ref. [1]). Comparison between the
exact and LLWM for various values of x and t for Example 1. is presented in Table 1.
For larger values of k and M , we get the results closer to the real values. Numerical
solutions of Eq.(6.1) for various values of x and t are presented in Fig. 1.

Example 6.2 Consider the Fisher’s linear equation

∂u/∂t = ∂2u/∂x2−u, x, t ∈ R (6.4)
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Fig. 1 Numerical solutions of Eq. (6.1) for various values (x, t) with K = 0.5, k = 1 and M = 4

with initial condition

u(x, 0) = e−x+x, x ∈ R (6.5)

Using HAM, the exact solution in a closed form is

u(x,t) = e−x + x((1 − t)+ (t2/2)− (t3/6)+ (t4/24)− . . .)

= e−x + xe−t (6.6)

The Haar wavelet scheme is given by

cT
(m)Q(m)h(m)(xl)+ xl

[
−cT

(m)P(m) f + g′
1(ts+1)− g′

0(ts+1)
]

+ g′
0(ts+1)

= u′′(xl , ts+1)− u(xl , ts+1) (6.7)

Expanding s(x,t) by Legendre wavelets using the following relation

CT
n+1 = CT

0 +
[
CT

n D2
x − GT

n

]
P2

t (6.8)

Example 6.3 Consider the following reaction–diffusion equation

∂u/∂t = ∂2u/∂x2 + 2tu, x,t ∈ R (6.9)

with initial condition

u(x, 0) = ex, x ∈ R (6.10)
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Using HAM, the exact solution in a closed form is

u(x, t) = ex+t+t2
(6.11)

Expanding u(x,t) by Legendre wavelets using the following relation

CT
n+1 = CT

0 +
[
CT

n D2
x − GT

n

]
P2

t (6.12)

Example 6.4 Consider the equation

∂u

∂t
= ∂2u

∂x2 − (4x2 − 2t + 2)u, (x, t) ∈ � ⊂ R2 (6.13)

with initial condition

u(x, 0) = ex2
x ∈ R (6.14)

Using HAM,

u0(x,t) = ex2

u1(x,t) = ex2
(1 + t2)

u2(x,t) = ex2
(1 + t2 + t4/2!)

u3(x,t) = ex2
(1 + t2 + t4/2! + t6/3!)

The final solution is

u(x,t) = ex2
(1 + t2 + t4/2! + t6/3! + t8/4! + · · ·)

= ex2+t2
(6.15)

Expanding s(x,t) by Legendre wavelets using the following relation

CT
n+1 = CT

0 +
[
CT

n D2
x − GT

n

]
P2

t (6.16)

Our proposed method (LLWM) can be compared with Wazwaz and Gorguis results
(See Ref. [3])

Example 6.5 Consider the Fisher equation of the form (Wazwaz and Gorguis [3],
2004, Hariharan et al. [1], 2009)

∂u

∂t
= ∂2u

∂x2 + u2(1 − u), 0 < x < 1 (6.17)
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With the initial condition

u(x, 0) = 1

1 + e
x√
2

(6.18)

Using the HAM, the exact solution in a closed form is given by

u(x, t) = 1

1 + ev(x−vt)
, v = 1√

2
(6.19)

Our proposed method (LLWM) can be compared with Wazwaz and Gorguis results
(See Ref. [3]).

All the numerical experiments presented in this section were computed in double
precision with some MATLAB codes on a personal computer System Vostro 1400
Processor x86 Family 6 Model 15 Stepping 13 Genuine Intel ∼1596 Mhz.

7 Conclusion

In this work, a new coupled method has been successfully employed to obtain the
numerical solutions of linear and NLRDEs arising in mathematical chemistry. The
proposed scheme is the capability to overcome the difficulty arising in calculating
the integral values while dealing with nonlinear problems. This method shows higher
efficiency than the traditional Legendre wavelet method for solving nonlinear PDEs.
Numerical example illustrates the powerful of the proposed scheme LLWM. Also this
paper illustrates the validity and excellent potential of the LLWM for nonlinear and
fractional PDEs. The numerical solutions obtained using the proposed method show
that the solutions are in very good coincidence with the exact solution. In addition
the calculations involved in LLWM are simple, straight forward and low computation
cost.
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